If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-5v-13=0
a = 1; b = -5; c = -13;
Δ = b2-4ac
Δ = -52-4·1·(-13)
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{77}}{2*1}=\frac{5-\sqrt{77}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{77}}{2*1}=\frac{5+\sqrt{77}}{2} $
| 4^x-10*2x+16=0 | | 4^x-10*2+16=0 | | 0=3(x-6)(x-2) | | 0.5x-1.2=-7.7 | | 2/3x-19=25 | | 1/8x+13=21 | | 4v+12=15 | | 10a^2-11a-18=0 | | m/9=-9 | | 7-2.33x=23+3.5x | | 3x×x=0 | | 4u-4=12 | | -2j-(5j+2)=-(3j-1) | | 9x-156=2.33x+36 | | --2h-16=3h-6 | | 4i+5=3(2i+6) | | √x²-66+189=0 | | 4m=−12 | | 3+2(3h-1)=4 | | W^2-70=-3w | | 15b=90 | | 3-(2-5k)=6 | | (x+19)/5=8 | | 3-7=8-39x5x10 | | x+(19/5)=8 | | 10a^2-11a=18 | | 8-2=75x3x15 | | 2.35x5=11.75 | | 2.5x-24=2.5x+4 | | 2(4d-1)=0 | | 7p=111=46.7 | | 3/4s+4=10 |